绿色圃中小学教育网
标题: 新课标人教版七年级数学《5.2.2平行线的判定(2)》同步测试 [打印本页]
作者: 网站工作室 时间: 2014-4-21 20:31
标题: 新课标人教版七年级数学《5.2.2平行线的判定(2)》同步测试
试卷 《5.2.2平行线的判定(2)》同步测试
初稿:王新华(巢湖市散兵中心学校) 修改:张永超(合肥市教育局教研室) 校对:夏晓华(安徽省庐江县第三中学)
一、选择题
1.下列四幅图中都有∠1=∠2,其中能说明AB∥CD的是( ).
A B C D
考查目的:考查平行线判定条件的灵活应用.
答案:C.
解析:本题关键是弄清∠1和∠2是哪两条直线被哪一条直线所截得到.根据同位角和内错角的定义,选项A中∠1和∠2是直线AD、BC被直线AC所截得到,不能得出AB∥CD;同理,选项B、D也不能得出AB∥CD;选项C中∠1和∠2是直线AB、CD被直线AC所截得到,可以得出AB∥CD.正确答案应选择C.
2.如图,下列推理错误的是( ).
C.∵∠2+∠3=180?,∴

∥

D.∵∠1=∠5,∴

∥

考查目的:考查平行线判定方法的灵活应用.
答案:B.
解析:选项A的根据是判定方法2,选项C的根据是判定方法3,选项D的根据是判定方法1,只有选项B不符合平行线3种判定方法中的任何一个条件.故答案应选择B.
3.如图,下列条件不能判断AD∥EF的是( ).
A.∠D=∠EFC B.∠D+∠EFD=180? C.EF∥BC,AD∥BC D.∠A+∠B=180?
考查目的:考查对平行线判定方法的理解与应用.
答案:D.
解析:选项A可根据同位角相等,两直线平行判定AD∥EF ;选项B可根据同旁内角互补,两直线平行判定AD∥EF;选项C可根据平公理的推论判定AD∥EF;选项D根据同旁内角互补,两直线平行只能判定AD∥BC,而不能判定AD∥EF.故答案应选择D.
二、填空题
4.将两块含有45?角的直角三角板如图放置,AC、BD在同一条直线上,写出图中所有的平行线 .
考查目的:考查平行线的判定方法及读图、识图能力.
答案:AE∥BF,DF∥CE.
解析:由直角三角板可知:∠EAC=∠FBD=45?,∠FDB=∠ECA=45?,所以根据同位角相等,两直线平行可得AE∥BF,DF∥CE.
5.如图,填空并在括号中填注理由:
⑴由∠ABD=∠CDB得 ∥ ( );
⑵由∠CAD=∠ACB得 ∥ ( );
⑶由∠CBA+∠BAD=180°得 ∥ ( ).
考查目的:考查平行线3种判定方法的灵活应用.
答案:⑴AB,CD,内错角相等,两直线平行;⑵AD,BC,内错角相等,两直线平行;⑶AD,BC,同旁内角互补,两直线平行.
解析:首先应辨别和判断给出的两个角是类型的角,是哪两条直线被哪一条直线所截所得,再探究判定直线平行的依据.⑴⑵中相等的两个角都是内错角,因此判定两条直线平行的依据是平行线的判定方法2.⑶是两个同旁内角互补,因此判定两条直线平行的依据是平行线的判定方法3.
6.已知三条不同的直线

,

,

在同一平面内,下列四个推理:
其中正确的是 .(填写所有正确的序号)
考查目的:考查平行公理的推论和平行线的判定的综合运用.
答案:②④.
解析:①根据平行公理的推论可以得出

∥

;②根据平行公理的推论可以得出

∥

;③根据平行线的判定方法可以得出

∥

;④根据同位角相等,两直线平行可以得出

∥

,所以②④正确.
三、解答题
7.如图:∠1=60?,∠2=120?,∠3=60?,试说明直线AB与CD,BC与DE的位置关系.
考查目的:考查平行线判定方法的综合应用,以及推理能力.
答案:AB∥CD,BC∥DE.理由是:∵∠2=120?,∴∠4=60?.∵∠3=60?,∴∠4=∠3,∴AB∥CD.
∵∠1=∠3=60?,∴BC∥DE.
解析:本题首先应该根据已知条件得出∠4=∠3=60?,∠1=∠3=60?,然后再利用平行线的判定方法来分析判断.
8.已知:如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与AE的位置关系,并说明你的理由.
某同学在解决上面问题时,准备三步走,请你完成他的步骤.
⑴问题的结论:DFAE.
⑵思路分析:要使DFAE,只要∠3=.
⑶说理过程:
解:∵CD⊥DA,DA⊥AB,
∴∠CDA=∠DAB=. ( )
又∵∠1=∠2,
∴∠CDA-∠1=- ,( )
即∠3=,
∴DFAE.( )
考查目的:考查平行线的判定方法和垂直的概念的综合应用,以及分析推理能力.
答案:⑴∥;⑵∥,∠4;⑶90°,垂直定义;∠DAB,∠2,等式的性质,∠4,∥,内错角相等,两直线平行.
解析:本题的解答需要紧扣题图,弄清推理过程中每一步的依据.
欢迎光临 绿色圃中小学教育网 (http://www.lspjy.com/) |
Powered by Discuz! X3.2 |