|
3.如图(2),DC平分△ABC的外角,与 BA的延长线于D,那么∠BAC>∠B,为什么?
三、巩固练习选择题 1.在下列四组线段中,可以组成三角形的是( )①1,2,3 ②4,5,6③1,, ④15,72,90
A.1组 B.2组 C 3组 D.4组
2.下列四种说法正确的个数是( )
①一个三角形的三个内角中至多有一个钝角
②一个三角形的三个内角中至少有2个锐角
③一个三角形的三个内角中至少有一个直角
④一个三角形的三个外角中至少有两个钝角
A.1个 B.2个 C.3个 D.4个
3.△ABC中,三边长为6、7、x,则x的取值范围是( )
A.2<x<12 B.1<x<13 C.6<x<7 D.无法确定
4.等腰三角形两边长分别是5和7,则该三角形周长为( )
A.17 B.19 C17或19 D.无法确定
四、作业
1.教科书复习题A组l-5。
小结与复习(二)(习题课)
教学目的
通过复习与练习使学生对本章知识有更深的了解,并会灵活运用三角形内角和等于180°,外角性质,外角和以及多边形的内角和解决实际问题,进一步理解正多边形能铺满地面的道理,提高学生分析问题、解决问题的能力。
重点、难点
灵活运用三角形内角和定理和外角性质。
复习过程
问题1:△ABC的三边a、b、c都是正整数,且满足0≤a≤b≤c,如果b=4,问这样的三角形有多少个?
问题2:如图(1)依图填空:
1.在△ABC中,BC边上的高是
( )
2.在△AEC中,AE边上的高是
( )
3.在△FEC中,EC边上的高是
4.AB=CD=2cm,AE=3cm ,则△AEC的面积S=( ),CE=( )
分析:在非标准位置的三角形中,运用定义识别直角三角形、钝角三角形的高,利用三角形面积公式S△AEC=×AE×CD=CE×AB可求得CE。
问题3:如图(2),在△ABC中,D是BC上一点,∠1=∠2,∠3=∠4,∠BAC=63° 求∠DAC的数。
分析:∠DAC是△DAC的内角,可先求出∠4或∠3,∠4既是△ADC的内角,又是△ABD的外角,所以可利用三角形内角和与外角性质,可建立∠4和∠2(或∠1)的关系式,进而可求出∠DAC。
问题4.如图(3),在△ABC中,∠ABC与∠ACB的平分线相交于0,那么∠BDC=90°+ ∠A,你会说明这个结论正确?
分析:因为∠BDC是△BDC的内角,所以根据三角形内角和的定理,∠BDC=180°-∠l-∠2
问题5:已知多边形的一个内角的外角与其它各内角和为600°,求边数及相应的外角的度数。
分析:根据多边形的内角和公式,已知内角和可求边数,由于内角和中的一个内角换成了一个外角,所以设辅助未知数x,根据其外角小于 180°,列方程。
作业
教科书复习题A组5、6,B组7、8、9
第九章 轴对称
9、1生活中的轴对称
第一课时 生活中的轴对称
教学目的
1.通过展示轴对称图形的图片,使学生初步认识轴对称图形;
2.通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;
3.培养学生的动手试验能力、归纳能力和语言表述能力。
重点、难点
轴对称图形的概念是教学重点,判断图形是否是轴对称图形既是教学重点又是教学难点。
教具准备
一些关于轴对称的图片、半透明纸张。
教学过程
一、引入
1.展示图片,认识一些轴对称图形。
自远古以来,对称形式被认为是和谐美丽、并且真实的,不论是在自然界中还是建筑里,甚至最普通的日常生活用品中,对称的形式随处可见,青山倒映在水中,这是令人难忘的对称景象。同学们可以想象,当你放学回家,落日、晚霞、还有远处的青山倒映在平静的水中,这样如诗如画的景致怎能不令人难忘,
2.课上展开讨论,列举出一些现实生活中有关轴对称的物体和建筑物。
二、新课
1.试验
把一张半透明纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?
由教师先示范剪出一个图形,而后由同学们自由发挥想象,剪出图案。
2.由展示的图片和同学们剪出的图案归纳轴对称图形的概念。
从同学们剪出的图案和展示的图片来看,这些图形如果沿着某条直线对折,对折的两部分是完全重合的,这样的图形称为轴对称图形这条直线叫做这个图形的对称轴。
三、练习
1.要求同学们找出所剪的图案的对称轴,并且用直尺把它画出来。
2.结合展示图片,让同学们找对称轴,并使同学们知道有的轴对称图形不止一条对称轴。例如:圆、五角星、正方形等。
3.给每位同学发一张半透明的画有如右图所示的星形图,然后用不同的方式对折,用直尺画出折痕,看看这颗星有几条对称轴。
四、课堂小结
本节课认识了什么样的图形是轴对称图形,这些图形都有共同的特点,就是沿着某条直线对折,直线两旁的图形完全重合,这条直线称为这个图形的对称轴。值得同学们注意的是,有的轴对称图形的对称轴不止一条,例如,练习第3题中的星形图就有六条对称轴。
五、作业
1.第68页练习第2题。
2.第69页习题9.1练习第1、2题
第二课时 |
|