|
沙发
楼主 |
发表于 2011-10-13 21:28:58
|
只看该作者
教学内容:北师大版小学数学五年级上册第一单元。
学情分析:
5年级学生已经有了一些探索数学问题的方法和总结规律的经验,思维比较活跃。他们能随时发现并提出数学问题。在解决问题的过程中,能根据具体问题选择有效的解决方法和策略,并能及时地总结自己的方法,在运用中积累经验。学生是伴随课程改革成长起来的,他们有较好的学习习惯,能认真倾听,敏锐地捕捉有用的信息,并能与同学有效的合作。他们好奇心和探索的欲望极强,渴望发现规律。在几年的学习中,他们的学习能力越来越强,准确的表达、恰当的评价、严肃认真的态度都很突出。估计学生可以在活动中自主探索本课的学习内容,形成认识,实现学习目标。
教材内容分析:
教材安排了几个不同的数学活动和游戏让学生体会数的奇偶变化规律,引发学生的思考,让他们在探究规律的活动中,发现解决问题的方法,从而运用这些方法去解决生活中的实际问题。
教学目标:
1、尝试运用“列表”,“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索奇偶性变化的过程,在活动中发现奇偶性的变化规律,在活动中体验研究方法,提高推理能力。
3、在学习“数的奇偶性”的活动中,能组织学生积极参与数学学习活动。
教学重、难点:
重点:使学生发现并掌握数的奇偶性变化规律。
难点:使学生应用数的奇偶性变化规律分析和解决生活中的一些简单问题。
教学课时:1课时
教学过程:
一、复习导入
同学们看,这些数哪些是奇数,哪些是偶数
1、2、3、4、5、10、11、20、21、30、31、100 、101
同学们认识了什么叫奇数,什么叫偶数,这节课就让我们进一步去探索发现数的奇偶性的规律。师同时板书:数的奇偶性
二、教授新知
(一)、奇偶性在生活中的运用
活动一:师生互动,组织学生通过多种方法发现规律
在前不久在四川汶川发生的大地震中,由于桥梁倒塌,解放军叔叔不辞辛劳,不分日夜,不顾余震的危险,一次次的将用船将物资运往灾区,再将伤员从灾区运送出来。看到这个画面,你们有什么感想吗?
这里面就蕴藏着一个数学问题。他们从河的南岸出发,划向北岸,这样算划1次,再从北岸划回南岸算第2次。
猜一猜,这样划11次后,小船是停在南岸还是北岸呢?
如果到第100次小船是停在南岸还是北岸?
提议:能不能找到一些方法,比较直观清楚的表现出船出发后结果,可以分小组研究研究。
生汇报合作的结果,
1、采用了画图的方法来解决这个问题。(在黑板上完成学生的图形。)
2、我们小组采用了列表的方法来解决这个问题,在电脑上完成学生的表格。
方法1:画图。
方法2:列表。
3、其它种方法
4、通过解决这些问题,观察板书,你有什么发现?
划奇数次后,船在 岸。
划偶数次后,船在 岸。
只要确定哪一次的位置,就能确定所有奇数的位置?偶数呢?
有人说划了999次后,船在北岸,这种说法对吗?为什么?
刚才同学们通过列表、画图等方法探索出了划船中的奇偶性规律,真会思考!其实我们的生活中还有很多这样含有奇偶性规律的例子
活动二:扩展延伸、巩固所学
1、原来利用数的奇偶性可以帮助我们解决一些问题。请同学用手里的杯子,完成屏幕中出示的这道题(课件出示教材中的第14页的试一试。)
2、结合生活实际,运用所学解决问题
根据你的生活经验,在生活中还有那些地方可以用到数的奇偶性?
3、体会奇偶数的相对性
同学们,我们用这块小本块来代表一辆小汽车,从右边开始,开到左边算是一次,返回算第二次。在规定的时间内看哪个小组的小车开得最远,数得最准。
请你们小组报你们小车走的次数,让同学们来猜猜车在哪?
小结:你们是怎么知道的?
从左边开始,游戏过程如上。
质疑 :为什么刚才奇数次在左边,现在奇数次的却在右边呢?
小结:因为每次的起点不一样。所以的奇数次位置也会发生改变。但我们只要记住第一次的位置,就可以以不变应万变。
(二)体会奇偶性在计算中的作用
抽奖游戏
教师把课前巩固的所有数字做成卡片,让学生任意抽期中的两张,用加法或是减法进行计算。如果结果是奇数的,获奖;如果是偶数,不获奖。
观察这些算式,你们能发现计算中奇偶性的一些规律吗?
板书:偶数+偶数=偶数
偶数-偶数=偶数
奇数-奇数=偶数
奇数+奇数=偶数
奇数-偶数=奇数
奇数+偶数=奇数
偶数-奇数=奇数
刚才同学们都是用教师指定的数来进行计算的,我们还能再举一些别的数,来看看你们找到这些规律的正确吗?
判断题:判断下列算式的结果是奇数还是偶数
103+2003 11387+131 268+1023 60075-997
2+4+6+8+10……+998+1000 2+4+6+8+10……+998+1000+1
三、实践应用,解决问题(课件出示)
有一次老师在街头看到这样一个有趣的游戏:出示规则:
用骰子掷一次,得到一个点数,以A点为起点,连续走两次,走到哪一格,那一格的奖品就归谁。
思考:这样玩你们会得奖吗?
生自由讨论,发言
哪怎样修改规则,你们可能会获奖呢?
怎样修改规则,你们会100%获奖呢?
四、全课总结:
板书设计:
数的奇偶性
开始状态:南岸 结果是偶数 结果是奇数
11次 北岸 偶数+偶数 奇数-偶数
100次 南岸 偶数-偶数 奇数+偶数
画图法 奇数-奇数 偶数-奇数
列表法 奇数+奇数
教学反思:
对于数的奇偶性的运用的举例有些不恰当。 可以利用课堂中生成的资源灵活练习,反思这堂课,我觉得应及时审视自己的教学,调控学生的情绪,引导学生积极参与到课堂中。在练习题的设计中,可以利用课堂中生成的资源灵活练习,而不是一成不变的,这就要求教师正确处理好预设与生成的资源。还应该提高自己的应变能力,处理好课堂随机生成的随机情境,加强对学生及时准确恰当的评价。
|
|