绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 7875|回复: 8
打印 上一主题 下一主题

和学生谈怎样数学

[复制链接]
跳转到指定楼层
楼主
发表于 2008-5-19 07:06:00 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
让你爱数学

李晓梅
只有喜欢数学,热爱数学,才能真正学好数学,运用好数学。那么,怎样才能喜欢数学、热爱数学呢?
1.培养学习数学的兴趣。
人们常说兴趣是最好的老师,学习数学也是这样。那么,怎样才能培养自己学习数学的兴趣呢?其实方法很多,其中之一就是寻找生活中的数学问题,真正体验到生活中处处有数学。
例如,妈妈让你到商店去买5个面包,在陈列面包的柜台里,放着如下图所示这样一些不同种类的袋装面包,你可以怎样买呢?
可以有5种不同的买法,分别是:
(1)买一袋,5只装的一袋。
(2)买两袋,可以有两种买法。
     a.一袋1只,一袋4只。
     b.一袋2只,一袋3只。
(3)买三袋,可以有两种买法。
     a.2只装的买两袋,三只装的买一袋。
     b.3只装的买一袋,l只装的买两袋。
(4)买四袋,2只装的买一袋,1只装的买三袋。
(5)买五袋,1只装的五袋。
同学们,这就是我们日常生活中经常遇到的问题,是不是很有趣啊。在日常生活中,这样的问题有许许多多,只要你仔细观察、认真思考,就能用我们学到的数学知识解决这类问题。体会到数学的有用性,你就会对数学充满深深的热爱,如果你总是怀着一种愉悦的心情学习数学,你就会乐此不疲、乐在其中。
2.掌握“分段”学习方法。
分段实现大目标,这是日本马拉松选手山田本一给人的启示。在1984年的东京国际马拉松邀请赛和1986年意大利国际马拉松邀请赛中,日本选手山田本一均夺得世界冠军。当记者请他谈谈经验时,性情木讷、不善言谈的山田本一的回答像谜:用智慧战胜对手。10年后,这个谜才被揭开。山田本一在他的一本自传中说:每次比赛之前,我都要乘车把比赛的路线仔细看上一遍,并把沿途比较醒目的标志画下来。比如第一个标志是银行,第二个标志是棵大树,第三个标志是一座红房子……这样一直画到赛程的终点。比赛开始后,我就奋力向第一个目标冲去。等到达第一个目标后,我又奋力冲向第二个目标……四十多公里的赛程,就被我分解成这么几个小目标轻松地跑完了。起初,我并不懂这个道理,我把我的目标定在四十多公里外终点线上的那面旗帜上,结果我跑了十几公里就疲惫不堪了。我被前面那段遥远的路程给吓倒了。
在学习数学的过程中也应该采取“分段”学习的方法。其实你们每天需要学习的数学内容并不多,例如第十一册教材第一课,只要掌握分数乘以整数的意义、计算法则,并能运用这些知识解答实际问题就可以了,这是多么简单的事情啊。日日积累、月月积累、年年积累就积累了许多数学基础知识与基本技能,在运用这些知识与技能解决实际问题的时候,你们的实践能力也会得到提高。
同学们,请你尝试一下运用以上的方法学习数学,你一定能更加喜欢数学、热爱数学。
(本文作者李晓梅是中国教育学会小学数学教学专业委员会学术委员,辽宁教育学院教研员。)
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

9#
发表于 2008-5-20 21:13:00 | 只看该作者

回复:和学生谈怎样数学

仁者见仁,智者见智!真是行万里路不如读万卷书,读万卷书不如阅人无数,阅人无数不如名师指点!
回复

使用道具 举报

8#
 楼主| 发表于 2008-5-19 07:08:00 | 只看该作者

回复:和学生谈怎样数学

怎样分析应用题



张发选



有的同学一看到应用题就害怕,不知从哪儿下手分析,下面谈谈分析应用题的一些基本方法。

首先要学好简单应用题,这是解答应用题的基本功。因为复合应用题都是由几个简单应用题组成的。

怎样分析复合应用题呢?由于思维过程不同,分为综合法和分析法两种。综合法是从已知条件出发,逐步推出要解决的问题;分析法是从问题出发,逐步追溯到已知条件。例如:红叶服装厂计划做66O套衣服,已经做了5天,平均每天做75套。剩下的要3天做完,平均每天做多少套?

用分析法分析:要求平均每天做多少套,就必须知道剩下多少套(未知)和剩下的要几天做完(已知);要求剩下多少套就必须知道计划做多少套(已知)和已经做了多少套(未知);要求已经做了多少套就必须知道平均每天做多少套(已知)和做了几天(已知)。这样一步一步找出新的问题中的数量关系,直到新的问题所要求的数量关系都成为已知条件为止。

用综合法分析:题中告诉我们,已经做了5天,平均每天做75套,我们能求出5天做的套数;已知计划做660套和5天做的套数,我们能求出剩下的套数;已知剩下的套数和剩下做的天数,我们能求出剩下平均每天做的套数。根据题中给的已知条件,一步步找到需要解答的问题。

分析应用题时两种方法经常是互相配合,灵活运用。用综合法分析要随时照顾要求的问题,注意已知条件和问题的关系;用分析法分析要随时照顾已知条件,注意问题和已知条件的关系。不论用什么方法分析应用题,都要认真审题,理解题意,通过分析已知条件和问题间的数量关系,找出中间问题(也叫关键问题),最后求得应用题的正确解答。

(作者单位:安徽省五河县新集镇中心学校)

回复

使用道具 举报

7#
 楼主| 发表于 2008-5-19 07:08:00 | 只看该作者

回复: 和学生谈怎样数学

用等拼法巧解几何题

喻译萱
有些几何题,按题中所给的条件往往不能直接解决。我们可以根据题意用“等拼法”完成。即取两个或多个与所求图形完全相同的图形拼起来,构成一个整体,然后利用所求图形与这个整体之间的关系进行求解。
[题目]  如图1,梯形ABCD中,AB=1O厘米,CD=2O厘米,斜边AD被等分成5等份,过各分点引AB的平行线相交于斜边BC。求梯形内部4条线段的总长是多少厘米?
[分析与解]  取与梯形ABCH完全相同的梯形CFEB,将这两个同样的梯形拼成平行四边形AEFD,如图2。梯形ABCH与梯形CFEB内部的4条线段对应相等,并且被拼成4条长度等于:1O+2O=3O(厘米)的线段,所以梯形ABCD内部4条线段的总长是30×4÷2=60(厘米)。
练一练:
一个等腰直角三角形,斜边长6厘米。这个三角形的面积是多少?
[参考答案(6÷2)×(6÷2)÷2]×2=9(平方厘米)]
(作者单位:江苏省如东县掘港小学)
回复

使用道具 举报

6#
 楼主| 发表于 2008-5-19 07:07:00 | 只看该作者

回复: 和学生谈怎样数学

先从简单情况考虑

陈圣宇
著名数学家华罗庚爷爷指出,善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窍。这段话给我们以深刻的启示:当我们遇到一道难题束手无策时,不妨采用“退”的方法先退到一种简单的情况进行考虑,然后通过判断、推理,进而使问题得到解决。举一个简单的例子:
例1.修一段公路,第一天修全路的多2千米,第二天修余下的少1千米,还剩下2O千米没有修完。求公路的全长。
我们可以退一步,先从简单的情况考虑:要是第二天修了剩下的,那么该剩下19千米,因此,除了第一天修的公路,还剩下19÷=38(千米)。再继续想,要是第一天只修了公路全长的,那么剩下的是38+2=4O(千米),所以公路全长是4O÷=80(千米)。
具体地说来,先从简单情况考虑可以分为从一般退到特殊,从抽象退到具体,从整体退到部分等。
例2.一只轮船往返于甲、乙两个码头之间一次。问:静水中航行所花时间长,还是流水中航行所花时间长,还是所花时间一样长?
这样的问题,一时很难作出回答。我们可以先从简单情况考虑,退到一种非常特殊的情况:即假定船速等于水速,那么问题就迎刃而解了。由于船速等于水速,因此轮船在逆水航行时将停止不前。这就是说,轮船无论花费多少时间,也无法在这样的流水中完成两个码头之间的往返航行。而在静水中航行的话,往返一次所花的时间总是“往”(或“返”)时的2倍。因此,在流水中航行所花的时间长。
接着看一下从抽象退到具体。
例3.某实验小学四年级的男生人数比女生多,问女生人数比男生少几分之几?
这道题比较抽象,而且由于“标准量”、“比较量”的前后变化,增加了题目的难度。但是如果我们先从简单情况考虑,把它从抽象形退到具体,问题还是不难解决的。
我们不妨假设四年级女生人数为4人,(其实只要所设的女生人数是4的倍数即可)根据题意,四年级男生人数为4×(l+)=5(人),所以(5-4)÷5=,即女生人数比男生少五分之一。
最后讲一下从整体退到部分。
例4.计算:

这道题用常规方法(通分后再相加)是行不通的。我们可以先从简单情况考虑,考查前几项的结果(即所求算式的一部分的结果);

……
据此,可得原题结果为
先从简单情况考虑,是我们解数学题的一个好方法,希望同学们能好好掌握。
(作者单位:江苏省启东审实验小学)
回复

使用道具 举报

5#
 楼主| 发表于 2008-5-19 07:07:00 | 只看该作者

回复:和学生谈怎样数学


做计算题也要认真审题



郑俊选



解答应用题的时候,我们都非常重视审题这个环节,因为不认真审题,就不能正确地理解题意、分析数量关系,解题也就无从入手了。而在做计算题的时候,往往认为数目和运算符号都是明摆着的,不审题也照样可以计算。其实,做计算题的时候同样也是需要认真审题的。通过审题,可以看清数目的特点,运算之间的关系,既能确定运算顺序,又能进一步思考:是否可以应用运算定律或运算性质,使计算方法更加合理、灵活,计算更加简便呢?审题,可以培养我们的观察能力,发展我们的思维能力,提高我们的计算能力。

现在,让我们通过计算下面的题,进一步认识审题是多么的重要啊!

(+)÷5×有的同学说这道题的计算结果是,你同意吗?先让我们一起来审题:这是一道含小括号的三步计算式题,按运算顺序的规定,应该先算小括号里的,再算小括号外的。小括号里+,和是,小括号外的乘法与除法属同一级运算,计算时应该从左往右依次进行。正确的计算过程是:(+)÷5×=÷5×=××=。计算的最后结果应该是,而不是。从表面上看,造成错误的原因是计算时违反了运算顺序,实际上呢,是有的同学被5×正好可以约分这一组合形式吸引所致。如果我们在计算之前能够认真审题的话,那么,这样的错误是完全可以避免的,你说对吗?

又如15×78+45×74,这是一道“求两积之和”的三步式题,粗看,数目和和运算之间没有明显的特点,按运算顺序应该先分别计算出15×78、 45×74的积,然后将两个积相加,它们的和便是计算的最后结果。如果我们在审题时,充分利用自己头脑中的数字知识,就能看到数目间的倍数关系,并能想到将原来的算式转化成为符合应用乘法分配律进行简算的可能性。依据“两个数相乘,一个因数扩大几倍,另一个因数缩小同样的倍数,积不变”的性质,将15扩大3倍为45,78缩小3倍为26,使15×78转化成为45×26。计算过程是:15×78+45×74=(15×3)×(78÷3)+45×74=45×26+45×74=45×(26+74)=45×100=4500。由此可见,认真审题,有时可以将题目进行合理地“改造”,使计算简便。

认真审题,既是一个良好的学习习惯,也是一项重要的学习能力。习惯和能力都需要有意识地去培养,让我们在做计算题的过程中,自觉地增强审题意识,锻炼审题能力吧!

(本文作者郑俊选:中国教育学会小学数学教学专业委员会常务理事;北京景山学校特级教师。)

回复

使用道具 举报

地板
 楼主| 发表于 2008-5-19 07:07:00 | 只看该作者

回复:和学生谈怎样数学

学习数学要多问为什么



李润泉



《数学小灵通》和小朋友们见面了,我预祝各位小朋友像刊物所期望的那样,经过自己的努力都成为数学小灵通,真正学好数学!

学好数学的窍门就是对每一项内容都要问为什么。例如,数学离不开数、量和图形,那么数、量和图形是怎样产生的?它们之间又有什么关系?为什么要学习这些内容和怎样才能学好这些内容?提出问题,然后寻找答案,就会发现原来数学的问题是从实际生活中总结出来的,学习这些内容更是为了进一步解决实际生活和学习中的问题。正如我国著名数学家华罗庚教授所说的,“数(shù)起源于数(shǔ),量(līàng)起源于量(līáng)。”“数学是一切科学得力的助手和工具。”“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”因此,带着问题学数学就容易在理解的基础上掌握所学的内容,并学会应用。

小朋友学习数学最先接触的是数和量。为什么只用十个阿拉伯数字就可以表示出任意的数?计数和计量有什么关系?如何掌握它们之间的内在联系?要弄清这些问题,先从小朋友在生活中已经接触过的数数开始。从一个一个地数,到十个十个地数,一百一百地数,一千一千地数……从而引出个、十、百、千……这就是计数单位。每个计数单位在写数时都占有一定的位置,这就是数位。有了数位这个概念,只用l、2、3、4、5、6、7、8、9、0这十个数字写在不同的数位上就可以表示出任意的十进位数。这就是国际上通用的十进制计数法。

同理,在学习计量时,先取一个单位作标准,然后一个单位一个单位地量(līáng),就产生各种不同的计量单位;把数和量结合起来,就可以比较量的多少和说明量的变化。掌握了计数单位和计量单位,在计算时,就容易理解只有相同计数单位上的数或相同计量单位的数才能直接相加减。

在学习图形知识时,常见的几何图形都存在于小朋友周围的物体中。把几何形体和量的计量相结合,不仅可以说明物体的形状,还可以表示出它们的大小和数量,并且可以计算出物体的长度、面积和体积,沟通长度、面积和体积三者之间的关系。几何形体看得见,摸得着,容易和实际结合,并且可以度量、计算和动手制作模型。因此,小朋友们通过看、摸和动手操作,容易发现和提出这样那样的问题。如平面图形的边长和周长有什么关系?各种图形之间有什么关系?长度、面积和体积之间有什么关系?等等。

认识平面图形时,带着自己发现和提出的问题,经过观察、探索、讨论、动手操作和实验,容易自行发现各种平面图形的特征和特性,边长和周长之间的关系。学习长度、面积、体积时,本来量长度要用长度单位,量面积要用面积单位,量体积要用体积单位,但是用面积单位量和用体积单位量不方便。经过探究,认识到可以借助图形的边长等算出它们所包含的面积单位数或体积单位数。学习各种图形的面积或体积时,通过把新的图形转化成前面学过的图形,就可以推导出新的图形的面积或体积计算公式。

紧密联系实际生活和原有知识,学习每一部分内容都多问几个为什么。这样学习数学不仅可以更好地理解所学的内容,掌握各部分知识之间的联系,学会应用,还培养和提高了自己的学习能力,掌握了数学王国入门的钥匙。

本文作者李润泉:中国教育学会小学数学教学专业委员会顾问,九年义务教育小学数学教材主编。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-11-7 16:37

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表