绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 765|回复: 0

初一数学知识点公式定理大全

[复制链接]
发表于 2023-3-29 10:29:33 | 显示全部楼层 |阅读模式
   初中数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容。小编在此整理了初一数学知识点公式定理大全,希望能帮助到您。


1.jpg


初一数学知识点公式定理大全


目录


数学公式定理大全


初一数学学习方法


初中数学解题方法与技巧


数学公式定理大全
1 过两点有且只有一条直线


2 两点之间线段最短


3 同角或等角的补角相等


4 同角或等角的余角相等


5 过一点有且只有一条直线和已知直线垂直


6 直线外一点与直线上各点连接的所有线段中,垂线段最短


7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行


8 如果两条直线都和第三条直线平行,这两条直线也互相平行


9 同位角相等,两直线平行


10 内错角相等,两直线平行


11 同旁内角互补,两直线平行


12 两直线平行,同位角相等


13 两直线平行,内错角相等


14 两直线平行,同旁内角互补


15 定理 三角形两边的和大于第三边


16 推论 三角形两边的差小于第三边


17 三角形内角和定理 三角形三个内角的和等于180°


18 推论1 直角三角形的两个锐角互余


19 推论2 三角形的一个外角等于和它不相邻的两个内角的和


20 推论3 三角形的一个外角大于任何一个和它不相邻的内角


21 全等三角形的对应边、对应角相等


22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等


23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等


24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等


25 边边边公理(SSS) 有三边对应相等的两个三角形全等


26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等


28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上


29 角的平分线是到角的两边距离相等的所有点的集合


30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)


31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边


32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合


33 推论3 等边三角形的各角都相等,并且每一个角都等于60°


34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)


35 推论1 三个角都相等的三角形是等边三角形


36 推论 2 有一个角等于60°的等腰三角形是等边三角形


37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半


38 直角三角形斜边上的中线等于斜边上的一半


39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等


40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上


41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合


42 定理1 关于某条直线对称的两个图形是全等形


43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线


44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上


45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称


46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2


47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形


48 定理 四边形的内角和等于360°


49 四边形的外角和等于360°


50 多边形内角和定理 n边形的内角的和等于(n-2)×180°


51 推论 任意多边的外角和等于360°


52 平行四边形性质定理1 平行四边形的对角相等


53 平行四边形性质定理2 平行四边形的对边相等


54 推论 夹在两条平行线间的平行线段相等


55 平行四边形性质定理3 平行四边形的对角线互相平分


56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形


57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形


58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形


59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形


60 矩形性质定理1 矩形的四个角都是直角


61 矩形性质定理2 矩形的对角线相等


62 矩形判定定理1 有三个角是直角的四边形是矩形


63 矩形判定定理2 对角线相等的平行四边形是矩形


64 菱形性质定理1 菱形的四条边都相等


65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角


66 菱形面积=对角线乘积的一半,即S=(a×b)÷2


67 菱形判定定理1 四边都相等的四边形是菱形


68 菱形判定定理2 对角线互相垂直的平行四边形是菱形


69 正方形性质定理1 正方形的四个角都是直角,四条边都相等


70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角


71 定理1 关于中心对称的两个图形是全等的


72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等


75 等腰梯形的两条对角线相等


76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形


77 对角线相等的梯形是等腰梯形


78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等


79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰


80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边


81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半


82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h


83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d


84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d


85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b


86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例


87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例


88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边


89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例


90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似


91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)


92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似


93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)


94 判定定理3 三边对应成比例,两三角形相似(SSS)


95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似


96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比


97 性质定理2 相似三角形周长的比等于相似比


98 性质定理3 相似三角形面积的比等于相似比的平方


99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值


100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值


101 圆是定点的距离等于定长的点的集合


102 圆的内部可以看作是圆心的距离小于半径的点的集合


103 圆的外部可以看作是圆心的距离大于半径的点的集合


104 同圆或等圆的半径相等


105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆


106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线


107 到已知角的两边距离相等的点的轨迹,是这个角的平分线


108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线


109 定理 不在同一直线上的三点确定一个圆。


110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧


111 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧


112 推论2 圆的两条平行弦所夹的弧相等


113 圆是以圆心为对称中心的中心对称图形


114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等


115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等


116 定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等


118 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径


119 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形


120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角


121 ①直线L和⊙O相交 dr


122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线


123 切线的性质定理 圆的切线垂直于经过切点的半径


124 推论1 经过圆心且垂直于切线的直线必经过切点


125 推论2 经过切点且垂直于切线的直线必经过圆心


126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角


127 圆的外切四边形的两组对边的和相等


128 弦切角定理 弦切角等于它所夹的弧对的圆周角


129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等


130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积等


131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项


132 切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项


133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等


134 如果两个圆相切,那么切点一定在连心线上


135 ①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-rr) ④两圆内切 d=R-r(R>r) ⑤两圆内含dr)


136 定理 相交两圆的连心线垂直平分两圆的公共弦


137 定理 把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形


138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆


139 正n边形的每个内角都等于(n-2)×180°/n


140 定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形


141 正n边形的面积Sn=pnrn/2 p表示正n边形的周长


142 正三角形面积√3a/4 a表示边长


143 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4


144 弧长计算公式:L=n兀R/180 145扇形面积公式:S扇形=n兀R^2/360=LR/2 146内公切线长= d-(R-r) 外公切线长= d-(R+r)






初一数学学习方法


学习数学应该按照五个步骤进行:


一预习


对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。


二听讲


这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。


三复习


体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。


四作业


认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。


五总结


这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。




初中数学解题方法与技巧


1、配方法;所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成—个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。


2、因式分解法,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,中学课本上介绍有提取公因式法、公式法、分组分解法、十字相乘法等都是因式分解的常用手段。


3、换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。


4、构造法;在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起—座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。


5、反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为两种:一种是相反的结论只有一种,另一种是相反的结论有无数种。前者需要把相反的结论推翻,后者只要举出一个反例,就达到了证明的目的。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-5-21 17:30

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表